

Advances in Printed Electronic Materials that Meet Cost and Performance Needs

Mark S. Critzer

DuPont Microcircuit Materials

Research Triangle Park, NC

mcm.dupont.com

1-800-284-3382

Agenda

- DuPont & Printed Electronics
- Applications & Materials Enable Lower Cost
- Trends & Challenges
- New, Differentiated Material & Process Solutions
- Summary

DuPont 2012 Segment Sales

\$3.4B

Nutrition & Health

\$10.4B Agriculture

\$1.2B
Industrial
Biosciences

\$2.7B
Electronics &
Communications

\$6.4B
Performance
Materials

\$7.2B
Performance
Chemicals

\$3.8B
Safety &
Protection

^{*} Total company sales exclude transfers.

Microcircuit Materials Business Over 40 Years

Traditional Printed Electronics at DuPont

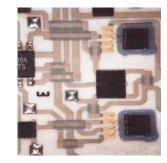
Materials (>95% Screen Print)

- Conductors: Silver, Gold, Copper, Alloys
- Dielectrics Multilayer, **Cross-over, Encapsulant**
- Resistors Carbon, Ruthenium
- Specialty PTC, Phosphor, ITO

Applications / **Substrates**

- Membrane Switch, EL / **PET Film**
- Rear Window Defogger / Glass
- Hybrid Microelectronics / **Alumina**
- Photovoltaic / Silicon
- Thin Film PV / Foil

Thick Film Multilayer Hybrid


Chip Resistors

Battery Tester

Bio Test Strip

"Hybrid IC" on Alumina

RFID Antenna

EL Lamps/Backlight

Membrane Touch Switch

Photovoltaic Si Cells

Current Products & Applications

Flexible TF Photovoltaics

Ag grid and bus bar

Biomedical sensors

Au, Ag/AgCl, carbon electrodes

Interconnects and membrane switches

Ag, C, dielectric

Electroluminescent lamps

Ag, phosphor, dielectric, carbon

RFID

Ag antenna

Displays, OLEDs, touch screens

Ag and C grid lines and connectors

The miracles of science

R&D

- Ink-jet inks
- Nano-Ag powders and inks
- Transparent conductors

Core Competencies

- Fine powder production
- Polymer chemistry
- Dispersion techniques
- Imaging techniques
- Rheology
- Coating and Casting

Deposition

- Flat Screen
- Rotary screen
- Flexography
- Dip
- Spray

Flex TF PV

Courtesy of Ascent

OLEDS

Courtesy of Holst Centre

Flexible Displays

Displays

Touch Screens

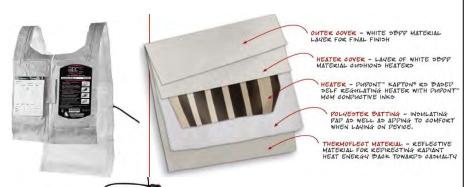
Courtesy of Holst Centre

Smart Packaging

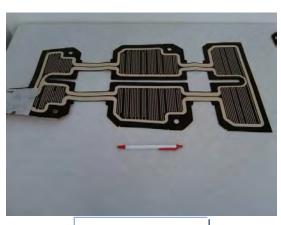
Courtesy of Storaenso

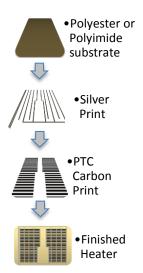
Printed Batteries

Courtesy of Power Paper


Current Focus Area

Technology Leadership & New Product/Application Development with Superior Functionality and Lower Total Cost to Customers




Screen Printed, Self Limiting Heaters

North American Rescue
Hypothermia Prevention Vests

Seat Heater
WET Automotive

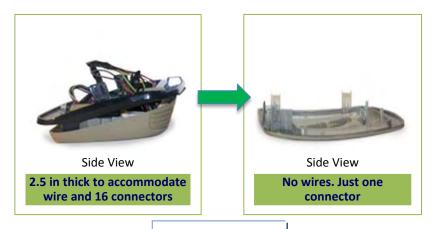
Enabling Ink Materials

- NEW, Robust PTC Carbon Inks!
 - Heats, but is Self Limiting (fails cold)
 - New Formulations Replace 7282
 - Improved Temperature Stability
 - No Pre-Conditioning
 - Improved Compatibility w/Adhesives
- NEW, High Conductivity Silver Inks!
 - Low Enough R for Single Print
 - Excellent Crease Resistance/Flexibility

PTC Self Limiting Auto Seat Heaters

- Address Liability Concerns
- Eliminate Controller and Temperature sensors, providing ~35% savings* vs. Incumbent Heated Wire Technology
- Lowest Energy Consumption technology

* Estimate



Standard Ag Ink Reference

New, Stretchable/Flexible Ag Ink!

Courtesy of T-Ink

Enabling Ink Materials

- NEW, Ultra Flexible Silver Conductors
 - STRETCH >75%
 - Can withstand high temperature thermoform and In-Mold processing
 - Maintains Electrical Performance
- NEW, Barrier & Insulating Dielectrics
 - Can withstand high temperature, thermoform and In-Mold processing
 - UV & Thermal Processing

Automotive, Appliance, Medical, etc.

- Capacitive Touch Design replaces Mechanical Switches for Simplicity, Reliability, Aesthetics
- Space & Weight Reduction, plus easier to assemble

Thermoforming / In-Mold Electronics

Trends & Applications

- Eliminate electro-mechanical switches / knobs / etc.
- Reduced cost
- Reduced tooling and assembly costs
- Simpler supply chain
- Smaller, thinner, lighter
- More reliable
- Unlimited design options
- Drag and Drop design
- Quick turn prototyping

Prototyping Capability at DuPont 4th Qtr 2013

- Design Capabilities
- 20"x 20"x4" Printing & Thermoforming capability
- Multi-color UV, Thermoset, Hard-Coat Processing
- Injection Molding via DuPont Performance Polymers
- Polycarbonate, Polyolefin substrates & Others

Trends in Materials Cost & Performance

<u>Trend # 1</u>

Impact of Precious Metals Price

<u>Unpredictable</u>, especially <u>Silver</u> since 2005

SOURCE: WWW,TRADINGECONOMICS.COM | NYMEX

Silver $< $10/T.O. 1985 \rightarrow 2005$ with relatively low volatility;

Silver Peaked at \$49/T.O. in 2011;

Silver is around \$20/T.O. today but what about 2014? 2016?

How can users protect themselves against future cost spikes?

Solution # 1 Introduce New, Lower Cost Conductors

It isn't always that simple, however

What is the Cost Target?

- >20% Reduction in Price (\$/gr), and/or more Price Stability vs Ag cost?
- Other considerations such as Coverage (cm2/g); Screen Life?
- Additional capital equipment required for processing?

What is Acceptable Electrical Performance?

- Resistivity (m Ω/\Box /mil)--How efficiently does the ink utilize % Ag?
- Resistance $(m\Omega/\Box)$ --How thick do you have to print to get "<u>Low Ohms</u>"?

Physical Performance?

- Adhesion, Crease Resistance, Line & Space Resolution
- Substrates other than PET film? (Coated Papers, Woven, Polyolefins)
- Long Term Aging Stability; Migration Resistance

New! (July 2013)

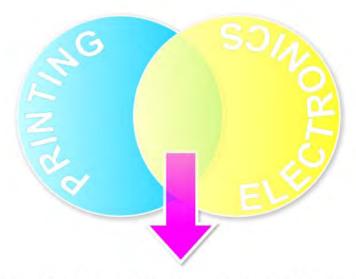
Lower Cost Thermal Cure Ag/Composite Conductors

Targeted Resistivity Ranges

- Allows designers to use inks with lower cost, based on track dimensions
- Each application has different conductivity requirements
- PE850, PE825 commercially available now
- Reduced-cost, higher resistivity versions under development
- Resistivity decade targets between 5 50 milliohms/sq/mil

"Drop-In" Replacement in Most Cases

- No additional equipment required
- Use current printing/drying process
- Designed to meet ASTM specifications for generic MTS and Printed Electronics applications
- Conventional Solution for the Conventional Approach


Trend # 2 Convergence of Two Industries

Graphics Printing

- Visual Performance
- Roll-2-Roll Assets
- High Speed, Low Cost Printing

Electronics

- Functional Performance
- Precision Patterning
- Clean Rooms

Wide-spread, low-cost, lower-performance circuits with unconventional use (at least in theory)

<u>Universities are Playing a Key Role</u>

- Currently with Western Michigan (CAPE), Clemson (Sonoco), & Cal Poly State
- Long History of DuPont Collaboration with University Programs in Electronics

GOAL: Higher Speed, Lower Cost electronics

Solution #2 <u>Develop Faster Curing Techniques</u>

High Volume R2R Printing Requires Fast Drying

- Highly Conductive Materials = Thicker Prints (solvent removal critical)
- Commercial Polymer Thick Film Inks have limitations
- Traditional drying equipment generally not sufficient
 - Belt Oven: 120C for 2-6 minutes; Reel2Reel: 140C for 1 minute
 - Slow ramp-up of heat to substrate; limited airflow & turnover
 - Area of printed ink per impression too large
- Other Issues for High Speed Printing Include:
 - Limited # of Commercial Electronic Inks
 - Sample size too small to make cost-effective prototypes

Curing Techniques for Printed Electronics

Thermal

Traditional process--may require high temps for extended times

<u>UV</u>

Limited Mostly to Dielectrics; Inefficient for opaque conductors

Photonic

Pulsed light, rapid sintering of particles, rapid solvent evaporation

<u>Other</u>

Laser

Selective exposure by scanning with focused laser

Microwave

Rapid sintering, low penetration depths ($\sim 1.5 \mu$)

Electrical

Apply voltage across a printed structure, rapid sintering possible

Plasma

Sintering by exposure to low pressure plasma, e.g. argon

• **Chemical**

Room temp process, chemically induced coalescence

Photonic Curing/ Pulsed Sintering

- High intensity strobe sinters metal containing inks on a variety of conventional and low cost substrates
- Sintering times are in the millisecond range
- High temperatures achieved locally for short periods of time
- Convenient: noncontact process, ambient conditions
- Process variables are adjusted to accommodate ink and application (strobe energy, pulse length, # of pulses, web speed)
- New Focus on Photonic Curing of Base Metal Inks for High Speed
 Printing Applications

Commercial Units:

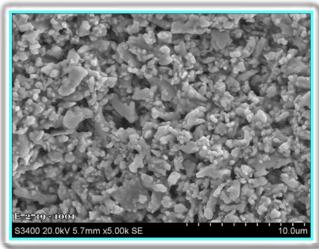
NovaCentrix PulseForge®

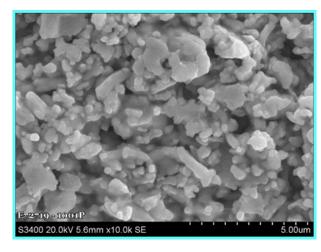
Xenon SINTERON™

Holst Center / Philips Aachen

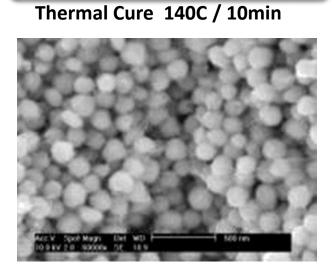
SINTERON 2000

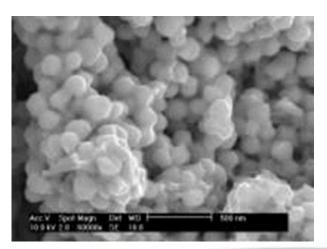
PULSEFORGE® 3300



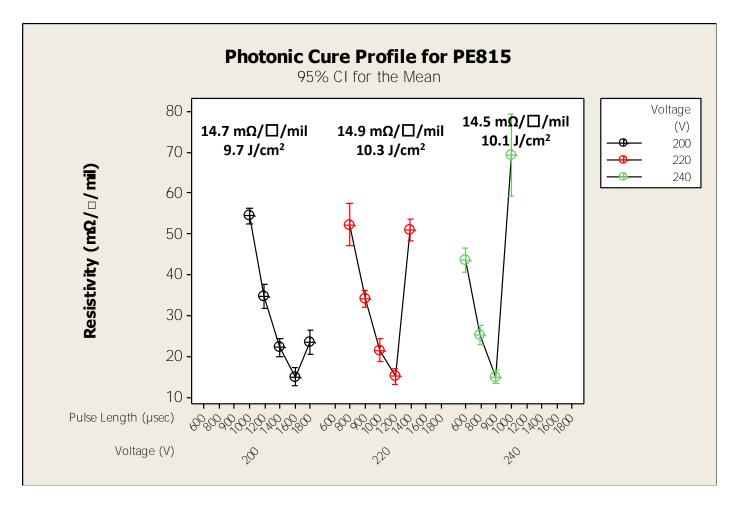


Low Cost Conductors Before / After Photonic Curing


Ag Flake



Photonic Cure


Ag Sphere

Minimum Resistivity achieved with several pulse voltage / pulse length combinations

Total exposure dose for each resistivity minimum is similar

Lower Cost Conductors w/ Photonic Curing

		Resistivity (mOhms/sq/mil)	
Product ID	Material	Oven (140C, 10 min)	Photonic Curing(*)
5064H	Silvers	5	4
5025		12	9
PE850		8	6
7102	Carbons	28,400	28,000
7105		16,200	16,400
PE815	Alloys &	90	12
PE825	Composites	20	20
5524		40	35

- PE815 Designed for Photonic Curing / Lamination/ Hot Roll Calendering
- PE850, PE825 Designed for Thermal Cure only
- <u>PE815, PE825, PE850 Available Now</u>
- Controlled Lab Testing with NovaCentrix PulseForge ® 3200
- Printed/dried on DuPont Teijin Films Melinex® ST505

The data above reflects results under a given experimental design and under controlled conditions, and should not be used to establish specification limits or used alone as the basis of design or appropriateness for use in a particular process or product configuration. The data provided herein shall not constitute a warranty of any kind.

<u>Improved Performance Using</u> <u>Lamination / Hot Roll Calendering</u>

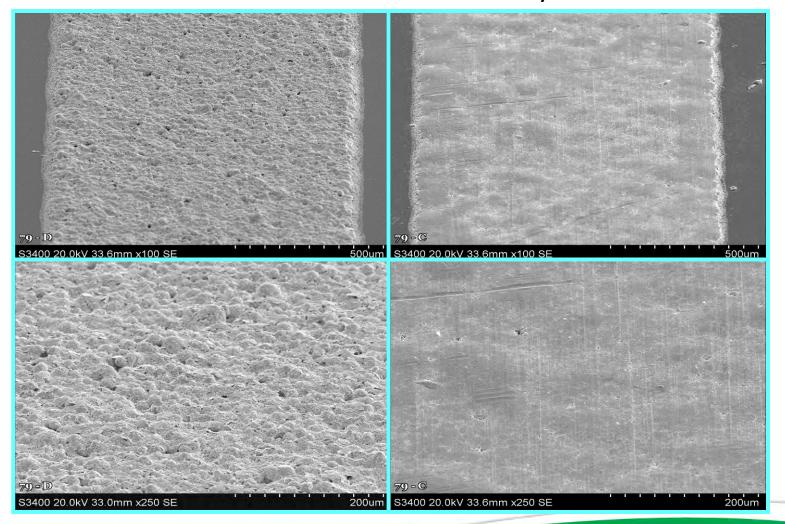
Trends & Applications

- Contactless Smart Cards in Production since early 1990's
- Calendering used in paper & film manufacturing
- Desire to switch from high Ag-content to new Alloys
- Additive High-Speed Screen Printing vs Etched Foil
- In use with DuPont 5029 Ag; PE815 & New Alloy Inks*
- New, targeted resistivity inks under development
- Smart Card, RFID, MTS, Biomedical, Smart Packaging
- Uniaxial Lamination or Continuous Hot Roll Calendering*

*Patents Pending

- Small scale Sheet or Roll Calendering up to 130C
- 18"x18" Uniaxial Lamination up to 130C
- New Printed Electronics Lab @ RTP 4th Qtr 2013

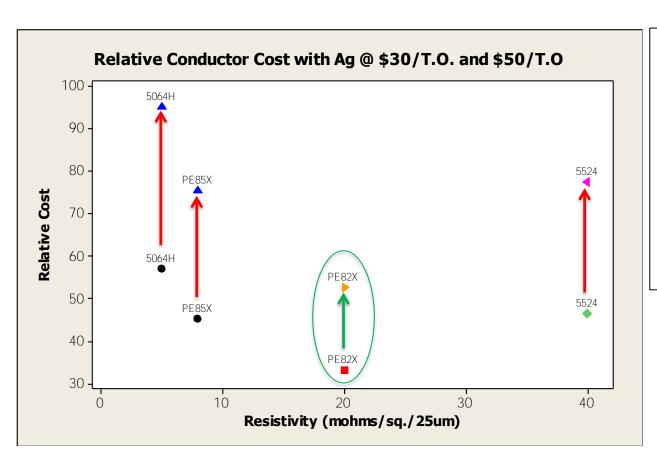
<u>Lab-Scale Calendering Unit</u> Courtesy Mathis AG



Lamination / Calendered Surface

Dried Print

Laminated / Hot Roll Calendered



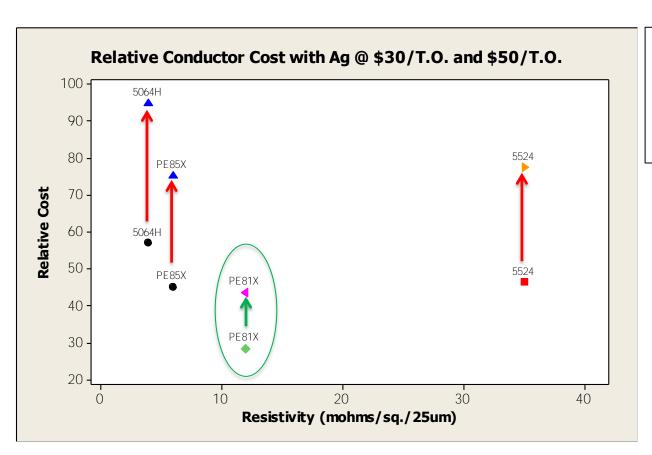
Conductor Costs – Thermal (140C) Cure

Protection against rising Silver Costs

PE850 (Silver)

- ✓ Lower Ag content
- ✓ Low Resistivity
- ✓ High Coverage

PE825 (Composite)


- ✓ Lowest Cost
- ✓ Good Resistivity
- ✓ Lower \$/TO Sensitivity

<u>Conductor Costs – Photonic Cure /</u> <u>Lamination / Calendering</u>

Protection against rising Silver Costs

PE815 (Alloy)

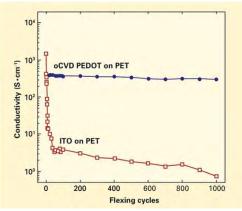
- ✓ Lowest Cost
- ✓ Good Resistivity
- ✓ Lower \$/TO Sensitivity

Printed Electronics on Paper

Trends & Applications

- RFID Labels for Inventory/Supply Chain
- Passports/IDs/Document Security
- I/C Connect to USB/Readers (IntelliPaper)
- Solvent or Water Based Flexo/Screen Print
- Electrical Performance vs Non-Permeable
- Number of New Substrate Technologies

Printed Solar Cells on Paper



<u>PV Cells Screen Printed</u> <u>on Newspaper</u>

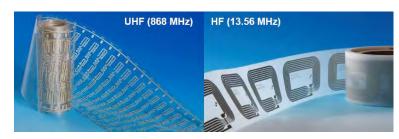
250 PV Cells = 50 Volts

Trends & Applications

- Low Cost PV need Low Cost Substrate & Inks
- Thin Film Electrode PEDOT vs High-Cost ITO
- High Speed Reel-2-Reel Printing for Volume
- Flexibility = Better Efficiency/Crease Performance
- Laminated w/ Plastic Film for Moisture Resistance

Printed Electronic Packaging

Packaging


- Diversification
- Logistics
- Traceability
- Sensing
- Medical

Advertising

- Diversification
- Interactivity
- Visual Impact

Printed Electronics on Paper

Courtesy T-Ink

Hallmark Interactive

Summary

New Printed Functional Inks can Enable Lower Cost Solutions

- Enabled by advances in design, processing, and materials
- In-Mold Electronics & lower cost help drive innovation
- Alternative substrates to traditional PET film (Paper, etc.)
- Screen Printing is still the dominant printing technique

Introduction of NEW Lower Cost Conductor Technology

- For traditional thermal curing & emerging photonic curing
- Can be used with lamination & hot roll calendering
- Provides protection against precious metal pricing
- More new formulations & unique applications going forward

There are many Commercial / Developmental Material Options

- Application / Design Dependent
- Work with the Ink Materials Suppliers

Thank you

The miracles of science™